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Guided Mode Characteristics of Metal-Clad Planar
Optical Waveguides Produced by Diffusion

SAMIR J. AL-BADER anp HUSSAIN A. JAMID

Abstract — Analytical and numerical results for the guided mode char-
acteristics of metal-clad planar waveguides produced by diffusion are
developed. Values of the complex propagation constants are obtained
numerically and are shown to be in good agreement with the analytical
results. These give insight into how waveguide and material parameters
determine the loss. Since the profile of the waveguide represents the
variation of the refractive index of the diffused-channel waveguide with the
depth dimension, the results obtained can be used to reduce the dimen-
sionality of the diffused-channel waveguide and facilitate the application of
the effective-index method.

I. INTRODUCTION

The application of metallic overlays to planar waveguides is
known to introduce modal loss that depends on the polarization
(TE or TM) and on the refractive index variation of the wave-
guide [1]. It is known that TM mode attenuation is approximately
an order of magnitude greater than TE mode attenuation. It is
also known that the dependence of loss on mode order is a strong
function of the index profile in graded-index waveguides. These
characteristics give rise to a number of applications, such as
mode and polarization filtering. Both step-index [2]-[4] and
graded-index metal-clad wavegunide types have been analyzed.
The latter type has been considered with linear [5], exponential
[6], and parabolic [7] graded-index profiles.

In this work, the metal-clad waveguide with a Gaussian-index
profile is analyzed. This waveguide is particularly important in
integrated optics because it is produced by one of the most
frequently used methods of fabrication, namely the diffusion of
metals, e.g. titanium, into LiNbO, or LiTaO, single crystals [8].
Detailed knowledge of the modal characteristics of the waveguide
is essential for the purpose of controlling the fabrication process
and realizing certain modal properties. Accurate analytical solu-
tions of the propagation constants and the field modes are also
important because this waveguide models the variation in the
depth dimension (into the substrate) of the two-dimensionally
varying refractive index of the diffused-channel waveguide. The
application of the effective-index method, such as in [9], to
reduce the dimensionality of the diffused-channel waveguide is
facilitated by such solutions. However, because a closed-form
solution of the wave equation for the waveguide with Gaussian
profile has not been available, analysis must follow approximate
methods. Perturbation theory in which the zero-order approxima-
tion is taken to be the solution of the parabolic profile has been
used in [10]-[12]. Other approaches by which the waveguide has
been analyzed have included the WKB method [13], [14] and
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other numerical methods [15]. In all these cases, only lossless

‘media are considered, and although planar waveguides obtained

by the diffusion of titanium into LiNbO, single crystals exhibit
low modal loss [8], the presence of metallic overlays will intro-
duce loss. The applications of interest to this work, namely mode
and polarization filtering, depend fundamentally on loss. We
develop a highly accurate closed-form description of the guided
field by solving the wave equation directly. The results are
applicable to cases where the metal cladding is replaced by a
lossless dielectric of sufficiently low refractive index, such as air.
In Section II, we obtain the complex propagation constants
and the waveguide modes by using a method due originally to
Mullin [16]. The Gaussian function is expanded and powers
through sixth order are retained. In Section III, an alternative,
numerical scheme is used to calculate the complex propagation
constants by integrating the wave equation for each guided mode
and requiring that these modes satisfy the boundary conditions at
the metal-dielectric interface. The efficiency of this scheme de-
pends on a good initial estimate of the values of the propagation
constants. These are taken from the results of the theory of
Section II and adjusted in the integration scheme to ensure
convergence. The feature of interest is that the adjustments are
obtained by utilizing Muller’s zero-finding algorithm [17]. It is
noted that this scheme is applicable to cases where the index
profile is an arbitrary function of the depth dimension. In Section
1V, numerical results obtained from the methods of Sections II
and III are compared and are contrasted with those obtained
when only the first two terms of the Taylor series expansion of
the Gaussian function are retaifed. It is shown that the two
models yield similar results as the modes become well guided.

II. THE GRADED-INDEX WAVEGUIDE
A. Model

The refractive index distribution is taken to be
n(z) =n}+(n?- n}) e~ (#/a)’

=n? z<0

A M
where n? and n3 are the squares of the refractive indices of the
surface and the bulk material, respectively, and n?, corresponds
to the metal cladding. All refractive indices, except that of the
cladding, are real quantities. The parameter g, is the diffusion
depth and is related to the depth diffusion constant D, by
a, = 2(D,t)/?, where ¢t is the diffusion time. In our analysis, we
approximate (1) by

wer=rirtni-(2) 32 5(2]

z>0

(2
All complex refractive indices will be written in the form n* = n’

+ jn’"* where n’® represents the real part of n? and n”? repre-
sents the imaginary part.

z>0

2

=n, z<0.
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B. Theory

We assume that the refractive index increment

ni —n3

n3

1.

The electromagnetic field of the waveguide must satisfy Maxwell’s
equations and both TE and TM waves under the above condition
satisfy the wave equation
d*¥
3
dz? G)

where, in order to be specific, ¥ represents H, for TE modes and
n(z)E, for TM modes. All field components are assumed to vary
as e/(“=BY with B=kn, and k corresponds to free space.
Accordingly, (3) is written in the form

+k2[n?(2) — nZe]| ¥ =0

2
¥
dz? +kz[Q0+Q222+Q4Z4+Q626]‘I'=0’ z>0 (4)
where
Qo= n% - ngff
2 2
ny —ny
Q2 - af
n?— nl
2 Zag
2 2
ny —ny
=— 5
Q6 6a6 ( )

We define the following quantities:

0 =0,z + Q2" + Qz°

(6)
Qs . 4000

: 1
R =f0 0 dz =5 0¥ +

soy?" T 4801
0, = k> +C, — -, ®)
0,
9= e )2 9)
1= 40, q 52

q=KQ, (10)
50, 32703

Ci=——%+ (11

1202 19203 )

30,

ok 12

G=7 0, (12)

¢ =2QY*RV?e /4, (13)
The solution of (4) is [16]

¥=A(R/Q)*D,(2), z>0 (14)

where D, are the parabolic cylinder functions, and

(15)

1
p= =3+ 0 /0,

The solution of the wave equation (3) in the metal cladding
region is obtained by substituting n2, for n?(z) and is given by

¥ = Be?” (16)
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where

8 =k(nZ—n2)"”

(17)
and B is an arbitrary constant. .

C. TE and TM Mode Eigenvalue Equations

We use the solutions of the wave equation as given by (14) and
(16), together with the continuity of tangential components at
z =0, to obtain the following eigenvalue equation:

d\I'/\P 0
dZ z=0——p

p=1 for TE modes
=n?/n%  for TM modes
and ¥ is given by (14). This equation can be written as
D;(0) ( d§)
D,(0)\ 4z
where the prime indicates differentiation with respect to the

argument. By using (7), (8), and (13), it can be shown that (18)
becomes

(18)

where

(19)

L~

d
2 Lim1 1/4
-, LimIn(R/Q)""+ (20)

=p

D;(0)
D,(0)

We use the following relationships:

{3
2
D,(0) =}—‘17

=)
to write (21) in terms of gamma functions in the following
manner:

21/2 Q%)/4Q12/4e—j1r/4 = pa

(21

2/
T(-»/2)

I‘( __1_)2(v—1)/2
and D;(0) =

D(=5/2) _ —20 0y e
2

The above equation is the eigenvalue equation whose roots give
the complex values of the guided mode propagation constants of
TE and TM modes. For the metals of interest, the right-hand side
of (22) is a small quantity and decreases rapidly with increased
diffusion depth. This suggests that solution of (22) may be sought
where the real part of v =1,3,---. It will be seen that with this
approach (22) gives accurate results when compared with the
results of the numerical scheme of Section III. In the following

subsection, we develop analytical solutions for the real and
imaginary parts of the propagation constants.

(22)

D. Solution of the Eigenvalue Equation

We first solve (15) for the variable g as follows:

q=—;—{CZ[(2v+1)2+l]

+@v+)y[@r+ 1) 42| €2 -40,(k2 + C,) } (23)

We write
(29)

and & is a small parameter. We designate the

v=n+ jd
where =1,3,---
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real parts of ¢ and Q, by g, and Q,,, respectively. Using (23)
and (24) and noting that C,, C,, and @, are real quantities, we
obtain

Qo= 2;(; {Cz [(2"7 +1) +1]

+@n+)y[@n+1)2+2] 2 ~40,(k2+ C) } (25)

The real part of n%; is determined from (25) and the first
equation of (5) as follows:
QOr (26)
while the imaginary part of nZ; ‘may be written in terms of Q;,
the imaginary part of Q,, as

nit == Qo (27)

In order to determine the imaginary part of nZ;, we use (8), (9),
(15), and (24) by writing

”eff = "1

+ =~
1+ 20,

(28)

where ;, and € are the real and imaginary parts of Q,
respectively. These are seen from (8) to be

c Qo
k2(Q0r+jQ0i)_72][1_ ki ]

1
— e —
2 2 lQZIQOr

o, =k* +C — k?Qy,C, / Qs (29)
and
kzczné'ff2
Q, = —2— 30
0 0, (30)

The fact that nj? < n/% has been used in (28).

In order to determine n/;?, we use the method outlined in [7].
Utilizing a suitable expansion of the left-hand side of (22), this
equation is written in the form

14 14
—20QY40,[7* _ F(‘E)F(HE)
pf Vo

-(1—y)(1+-§—)(1—§)(1+£)

=y + jbo.

(31)
Using the complex expression for » from (24) with =1,3,---,
the imaginary part of (31) to order & gives

1
0 nz)”] 2
or— "m

where the values of o for the first five modes are v, 1.18194,
0.94530, 0.81026, and 0.72023, respectively. Note that only the
real parts of Q, and Q, are used since their imaginary parts are
very small and that the properties of the metal are dominant in
the quantity within the square brackets. By using (30) and the

imaginary part of (28), the solution of n? is found to be

4(10,19,)**

ng} = '
G\ G
ko|l+ kQO,——— 29,0
0rx?2
1

“Im . (33)

p(n? - Qo,~n2)""

2
8= — i1, Im| —
o P("l —

The complex n.; is now obtained from (25), (26), and (33) and
written in the usual form:

//2)1/

Regp = ( ngg + jngg and B=kng.

(34)

III. NUMERICAL SOLUTION OF THE WAVE EQUATION

The wave equation (3) with n2(z) given by (1) is solved
numerically by using the central difference formula

V(z+Az)=2¥(z)-¥(z—-Az)

— k[ n?(2) ~ nZ| ¥(2)(Az)" (35)
where Az is a small increment in the depth dimension. Since
n%(z) undergoes a sharp change at z =0, the above scheme is
applied for z > 0. In order to facilitate this, we use the boundary
conditions of TM modes and note that TE mode results are
obtained by making p =1. We first designate the solution in the
region z <0 by ¥~ and in the region z > 0 by ¥*. According to
the boundary conditions, we have

nm
¥ (0)=—~¥"(0) (36)
1
d\If*(O " 40 37
LY = — (0). (37)
By utilizing a Taylor series expansion, we write
J+
¥H(0+Az) = \I'+(0)+Az— d( 0 . (38)
From (36) and (37), we have
n,, n d
¥*(8z) =2 (0)+ Az——¥(0). (39)
n n,, dz

The right-hand side of the above equation may be evaluated with
the aid of (16), in which, for convenience, the arbitrary constant
B is taken to be n, /n,,, giving

2
+ Ny — ny
¥ (AZ)=;I“I’ (0)+AZ(;I—‘) (]

=1+ Azpb

from which it is seen that ¥+ (0) =1.

Initial values for the iterative scheme of (35) are provided by
¥+ (0) and ¥ (Az) according to (36) and (40), respectively, and
solutions obtained when convergence is assured. The efficiency of
the scheme is facilitated by a good estimation of the value of n
for each mode and, hence, also the value of 6 in (40). This
estimate is calculated with the aid of (25), (26), and (33).

(40)

IV. NUMERICAL RESULTS AND DISCUSSION

Values of the propagation constants, as given by (25), (26),
(33), and (34), are compared with those obtained numerically by
the scheme of Section III. The waveguide parameters in all cases
are n? =4.9665, n} = 4.8469, n?, = —10.3-~ j1.0, corresponding
to Ti-diffused LiNbO; and gold cladding at A =0.6328 pm.
Values of 8 for the first three TE and TM modes are shown in
Table L. It is noted that the labeling of TM modes in metal-clad
waveguides may be confusing because of the existence of the
surface plasma wave. This question is discussed in [3], and our
TM mode labeling is consistent with that used in this reference.
It is seen from Table I that the analytical and numerical results
are in good agreement for both the B’ and 8.

The accuracy of a simplified model in which only the first two
terms of the Taylor series expansion of the Gaussian profile are
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TABLE1
VALUES OF THE COMPLEX PROPAGATION CONSTANTS OF THE METAL-CLAD WAVEGUIDE WITH GAUSSIAN INDEX PROFILE
a_in Analytical Numaerical Analytical Numaerical [N in  Analytical Numaerical Analytical Numaerical
(\fm) values of g values of B' values of B* values of B° (um) values of B8° valyes of 8' values of B° values of 8°*
TE M Mode
2 22.02136 22.02452 0.79304(-4) 0.75740(-4) 2 22.02136 22.01726 0.32207(-3) 0.31794-3)
3 22.05474 22.05636 0.46126(-4) 0.44834(—4) 3 22.05474 22.05205 0.18761(-3) 0.18924(-3)
a 22.07221 22.07324 0.30965(-4) 0.3029%(-4) 4 2207221 22,07033 0.12604(-3) 0.1278%(-3)
7 22.09546 22.09590 0.13952(-4) 0.13753(-4) T 220954 22.09459 0.05685(-3) 0.05783(-3)
10 22.10%01 22.10527 0.08309(-4) 0.082} 5(-4) 10 22.10501 22.10449 0.03387(-3) 0.03443(-3)
15 22.11255 22.11269 0.04582(-4) 0.04541(-4) 1S 22.11255 22.11226 0.0186%-3) 0.0189¢(~3)
TE ™, Mode
2 21.90303 21.91598 0.90405(~4) 0.71710(-4) 2 21.90303 21.90932 0.36524(-3) 0.27884(~3)
3 21.96828 21.97289 0.5777%-4) 0.5299%(-4) 3 21.9¢828 21.96789 0.23411(-3) 0.21442(-3)
4 22.00435 22.00676 0.40620(-4) 0.38692(-4) [ 22.00435 22.00310 0.1648%(-3) 0.15820(-3)
T 22.05437 22.05518 0.19401(~4) 0.19022(-4) 7 22.05437 22.05357 0.07891(-3) 0.07839(-3)
10 22.07558 22.07608 0.11823(~4) 0.11675(-4) 10 22.07558 22.07491 0.04813(-3) 0.04816(-3)
15 22.09258 22.09280 0.06636(-4) 0.06581(-4) 15 22.09258 22.09218 0.02704(-3) 0.02716&{-3)
TE T™, Mode
2 - - - - 2 - - - -
3 21.89384 21.90764 0.60074(-4) 0.45970(-4) 3 21.89384 21.90337 0.24260(-3) 0.1789%(-3)
a4 21.9a36! 21.94976 0.44303(-4) 0.39135(-4) 4 21.9436! 21.94608 0.17931(-3) 0.1565%(-3)
7 22.0157% 22.01730 0.22470(-4) 0.21638(-4) 7 22.01576 22.01525 0.09124(~3) 0.08806(-3)
10 22.04740 22.04811 0.14018(-4) 0.13736(-4) 10 22.04740 22.04681 0.05700(-3) 0.05616(-3)
15 22.07517 22.07350 0.08111(-4) 0.07921(-4) 15 22.07317 22.07275 0.03261(-3) 0.03244(-3)

retained is of interest. In this case, the Gaussian profile becomes
parabolic and the complex expression of n%; is obtained from
(25), (26), and (33) by making C, = C, = 0. We thus have

, (2n+1) n2A

n’% (parabolic) = n? — p (41)
a,
where
2 2
ny —ny
A= 42
2n? (42)
and
4 { ny28 2 1
ng’ﬁz(parabolic) = — O—k“ Im —;—;—T/—Z . (43)
o 4; P( ngg — "m)

Equations (41) and (43) are the same as those in [7] obtained for
the parabolic model. Examination of (25) shows that for %, the
Gaussian model tends to the parabolic model in a manner

dependent on the mode order and the diffusion depth. For any
particular mode, the two models become similar when a, is large
enough for the mode to be well guided. This condition is also true
for n/}? given by (33) and (43). The mode attenuation increases
with mode order in contrast to the mode attenuation in wave-
guides with linear [5] and exponential [6] profiles. In addition, the
attenuation of TM modes is approximately an order of magni-
tude greater than that of TE modes.
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A Novel Low-Noise Downconverter System Using a
Microstrip Coupled Transmission-Mode
Dielectric Resonator

MARY P. MITCHELL, STUDENT MEMBER, IEEE, AND
G. R. BRANNER, MEMBER, IEEE

Abstract — A low-noise downconverter system for microwave downlink
applications is presented. Although most downconverters with an internally
generated local oscillator have been designed utilizing MESFET’s and
DGFETs, the circuit described herein uses a silicon bipolar Darlington
pair as its active device and a dielectric resonator for feedback. Downcon-
verters of the latter type have been realized with noise figures as low as
4.57 dB and conversion gains of 7 dB over an intermediate frequency
range from 0.6 to 1.8 GHz.

I. INTRODUCTION

There is currently an increasing interest in downconverter
circuits which can be employed in low-noise receiver applications
such as those found in commercial radio links, satellite broad-
casting systems, and Doppler detectors.
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Fig. 1. Circuit configuration.

The application of single- and dual-gate GaAs MESFET’s as
downconverters has been reported previously [1]-[4] for frequen-
cies in the X-band region. In addition to their advantage of
simplicity, these devices have been shown to provide adequate
conversion gain and IF bandwidth; however, their noise perfor-
mance has been found to be a source of concern.

The objective of the effort reported in this paper was to
develop a downconverter operating over the 3.7 to 4.2 GHz
downlink band which would afford a simple, compact, and
easy-to-construct design.

The design is unique in the sense that it utilizes a bipolar
Darlington pair amplifier as its active device and dielectric reso-
nator as feedback to provide a source of stable internally gener-
ated local oscillator signal power. Additionally, a uniquely
synthesized diplexer circuit was developed for the output which
provides a wide-band response over the 0.6 to 1.8 GHz inter-
mediate frequency range used.

Design aspects of the downconverter and its circuit description
and construction are given in Sections II and III. Experimental
results are reported upon in Section IV.

II. DEesioN CONSIDERATIONS

Several fundamental circuit configurations were investigated
for the downlink receiver application being considered. A feed-
back-type structure was selected based on the system constraints
involved and a desire for simplicity. This configuration is il-
lustrated in Fig. 1. In this system, the RF signal a is injected
into port 1, mixed with an internally generated local oscillator
(LO) signal created in the feedback device located between ports
3 and 4, and the resultant IF signal is extracted at port 2.

The basic function of networks N, and N, is to provide for
signal matching and filtering at the input, and diplexing and
matching at the output of the system. In the downconverter
described here, these circuits are composed of passive microstrip
elements and chip capacitors.

Several fundamental feedback arrangements may be employed
to obtain the internally generated LO power required. These
include series, parallel, or reflective feedback. Due to its tempera-
ture stability, compactness, tunability, and simplicity, a dielec-
tric-resonator-based design was selected to perform this function
[5]. Although this portion of the circuit could be realized with the
dielectric resonator placed at either the input [6] or output [7] of
the active device, the design developed employs the resonator as
a parallel feedback element. This configuration has been found to
possess numerons advantages over the others, such as ease of
tuning [5], [6], [8].

The basic configuration of the dielectric-resonator feedback
network employed in the local oscillator circuit is shown in Fig.
2(a). As illustrated in this figure, the circuit consists of a dielec-
tric resonator placed between two curved microstrip lines. Thus,
in this arrangement, there is magnetic coupling between the two
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