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Short Papers

Guided Mode Characteristics of Metal-Clad Planar

Optical Waveguides Produced by Diffusion

SAMIR J. AL-BADER AND HUSSAIN A. JAMID

Abstract —Anafyticaf and numericaf resufts for the guided mode char-

acteristics of metaf-clad planar wavegnides produced by diffusion are

developed. Values of the complex propagation constants are obtained

numerically and are shown to be in good agreement with the analytical

results. These give insight into how waveguide and material parameters

determine the loss. Since the profile of the waveguide represents the

variation of the refractive index of the diffused-channel waveguide with the

depth dimension, the results obtained can be used to reduce the dimen-

sionafity of the diffused-channel waveguide and facilitate the application of

the effective-index method.

I. INTRODUCTION

The application of metallic overlays to planar waveguides is

known to introduce modal loss that depends on the polarization

(TE or T~ and on the refractive index variation of the wave-

guide [1]. It is known that TM mode attenuation is approximately

an order of magnitude greater than TE mode attenuation. It is

also known that the dependence of loss on mode order is a strong

function of the index profile in graded-index waveguides. These

characteristics give rise to a number of applications, such as

mode and polarization filtering. Both step-index [2]-[4] and

graded-index metal-clad waveguide types have been analyzed.

The latter type has been considered with linear [5], exponential

[6], and parabolic [7] graded-index profiles.

In this work, the metal-clad waveguide with a Gaussian-index

profile is analyzed. This ‘waveguide is particularly important in

integrated optics, because it is produced by one of the most

frequently used methods of fabrication, namely the diffusion of

metals, e.g. titanium, into LiNb03 or LiTa03 single crystals [8].

Detailed knowledge of the modal characteristics of the waveguide

is essential for the purpose of controlling the fabrication process

and realizing certain modal properties. Accurate analytical solu-

tions of the propagation constants and the field modes are also

important because this waveguide models the variation in the

depth dimension (into the substrate) of the two-dimensionally

varying refractive index of the diffused-channel waveguide. The

application of the effective-index method, such as in [9], to

reduce the dimensionality of the diffused-channel waveguide is

facilitated by such solutions. However, because a closed-form

solution of the wave equation for the waveguide with Gaussian

profile has not been available, analysis must follow approximate

methods. Perturbation theory in which the zero-order approxima-

tion is taken to be the solution of the parabolic profile has been

used in [10]–[12]. Other approaches by which the waveguide has

been analyzed have included the WKB method [13], [14] and
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other numerical methods [15]. In all these cases, only lossless
media are considered, and aJthou@ planar waveguides obtained
by the diffusion of titanium into LiNbO~ single crystals exhibit
low modal loss [8], the presence of metaflic overlays will intro-
duce loss. The applications of interest to this work, namely mode
and polarization filtering, depend fundamentally on loss. We
develop a highly accurate closed-form description of the guided
field by solving the wave equation directly. The results are
applicable to cases where the metal cladcling is replaced by a
lossless dielectric of sufficiently low refractive index, such as air.

In Section II, we obtain the complex propagation constants
and the waveguide modes by using a method due originally to
Mullin [16]. The Gaussian function is e~panded and powers
through sixth order are retained. In Section III, an alternative,

numerical scheme is used to calculate the complex propagation
constants by integrating the wave equation for each guided mode
and requiring that these modes satisfy the boundary conditions at
the metal--dielectric interface. The efficiency of this scheme de-
pends on a good initial estimate of the values of the propagation
constants. These are taken from the results of the theory of
Section II and adjusted in the integration scheme to ensure
convergence. The feature of interest is that the adjustments are
obtained by utilizing Muller’s zero-finding algorithm [17]. It is
noted that this scheme is applicable to cases where the index
profile is an arbitrary function of the depth dimension. In Section
IV, numerical results obtained from the methods of Sections 11
and III are compared and are contrasted with those obtained
when only the first two terms of the Taylor series expansion of
the Gaussian function are retaihed. It is shown that the two
models yield similar results as the modes become well guided.

II. THE GRADED-INDEX WAVEGUIDE

A. Model

The refractive index distribution is taken to be

n2(z) =n~+(n~– n~)e-(zlaz)” Z>o

= n; ,Z,<0 (1)

where n; and n~ are the squares of the refractive indices of the

surface and the bulk material, respectively, and n ~ corresponds

to the metal cladding. All refractive indices, except that of the

cladding, are real quantities. The parameter a: is the diffusion

depth and is related to the depth diffusion constant D: by

a= - 2( D=t)l/2, where t is the diffusion time. In our an&sis, we
approximate (1) by

Z>()

. n; Z< (). (2)

All complex refractive indices will be written in the form n2 = n’2

+ jn”2 where n‘2 represents the real part of n2 and n“2 repre-

sents the imaginary part.
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B. Theoiy where

We assume that the refractive index increment
f3=,k(n?&f –n~)l’2 (17)

n; — n;
— <<1. and B is an arbitrary constant.

n;
C. TE and TM Mode Eigenvalue Equations

The electromagnetic field of the waveguide must satisfy Maxwell’s

equations and both TE and TM waves under the above condition
We use the solutions of the wave equation as given by (14) and

satisfy the wave equation
(16), together with the continuity of tangential components at

z = O, to obtain the following eigenvalue equation:
d2~
~+k2[n2(z) –n~~~]V=0 (3) [H;* =pe (18)

where, in order to be specific, V! represents Hz for TE modes and
~=i)

~(z) E, for TM modes. All field components are assumed to vary where

as e–J(w*– By) with ~ = kn.~~ and k corresponds to free space. ~=1 for TE modes

Accordingly, (3) is written ~ri the form

where

We define the following quantities:

Q= Q2Z2 +Q4Z4 +Q6Z6

= n~/n~ for TM modes (19)

Z>o (4) and V is given by (14). This equation can be written as

D; (0) d{
-&\~ln(R\Q)1’4+—

()D,(o) z ,=0
= pe (20)

where the prime indicates differentiation with respect to the

argument. By using (7), (8), and (13), it can be shown that (18)

becomes

21,2 D; (0)
a~/4Q?/4e-J”/4 = PO.

D, (0)
(21)

We use the following relationships:

(5)

()

r ~ 2v/*

()

r – ~ 2(u-1)/z

D,(O) = ~_v and D;(O) =

()
r—

r( – ~/2)

(6) 2

Q4 o 4Q*Q6 – Qi 6
to write (21) in terms of gamma functions in the following

R = /ZQ1/2 dz = ; Q;12Z2 + —
8Q~/2 z + 48Q;/2

z (7) manner:
o

r( - ~/2) – 2@/4Q;/4e-JT/4

(8) l–v =

()

(22)

r~
pe “

q = k2Qo

5Q6 327Q;
cl=– —+—

2Q; 192Q;

(9) The above equation is the eigenvalue equation whose roots give

the complex values of the guided mode propagation constants of

lo) TE and TM modes. For the metals of interest, the right-hand side

of (22) is a small quantity and decreases rapidly with increased

11)
diffusion depth. This suggests that solution of (22) maybe sought

where the real part of v =1,3, . . . . It will be seen that with this

approach (22) gives accurate results when compared with the
3Q4

c2=—
(12) r~&lts of the numerical scheme of Section III. In the following

4Q2 subsection, we develop analytical solutions for the real and

{ = 2~~/4@/*e-Jd4 (13)
imaginary parts of the propagation constants.

The solution of (4) is [16]
D. Solution of the Eigenvalue Equation

V = A(R/Q)’’4DU((), Z>o (14) We first solve (15) for the variable q as follows:

where DV are the parabolic cylinder functions, and
q=:{c2[(2v+l)*+l]

(15) +(2v+1)([(2v +1)2+2] C; -4 Q2(k2 +Cl) ). (23)

The solution of the wave equation (3) in the metal cladding We write

region is obtained by substituting n; for n2 ( z) and is given by v=q+jti (24)

!V = Beez (16) where q =1,3,... and 8 is a small parameter. We designate the
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real parts of q and Q. by q, and Qo., mpmtively. using (23)
and (24) and noting that Cl, C2, and Q2 are real quantities, we

obtain

Qor=~(c2[(2q+l)2+l]

+(2q+l) [(2q+l)2+2] C; -4 Q2(k2 +Cl) }. (25)

The real part of n~ff is d&ermined from (25) and the first
equation of (5) as follows:

n~;~= n? —Qor (26)

while the imaginary part of n~ff may be written in terms of Qoi,
the imaginary part of Q., as

n~~ = – Qo, . (27)

In order to determine the imaginary part of n~ff, we use (8), (9),
(15), and (24) by writing

1 1

[

c’

1[ 1

j$?oi
q+jil= –-+ k2(Qor+jQoi)–~ 1–~

2 2J-

where flor and flOi are the real and imaginary

respectively. These are seen from (8) to be

Go, = k’ + Cl – k2QoTC2/Q2

and

The fact that n~~ < n$f has been used in (28).

(28)

parts of Q.,

(29)

(30)

In order to determine n~f, we use the method outlined in [7].

Utilizing a suitable expansion of the left-hand side of (22), this

equation is written in the form

–2@/4]Q2~/4 ‘(-i) r(’+i).
po G

.(I-V)(,+;)(I-; )(1+:)...
=y+ ji$u. (31)

Using the complex expression for v from (24) with q =1,3,...,

the imaginary part of (31) to order 8 gives

where the values of u for the first five modes are 6, 1.18194,

0.94530, 0.81026, and 0.72023, respectively. Note that only the

real parts of SIO and Q, are used since their imaginary parts are

very small and that the properties of the metal are dominant in

the quantity within the square brackets. By using (30) and the

imaginary part of (28), the solution of n~~ is found to be

4( ]Q2&.)3’4
& =

‘3”[1+(k2Q’’ai%2)l
1

. Im

2,

,,2. (33)

P(n:– Qor–nm

The complex ne~~ is now obtained from (25), (26), and (33) and

written in the usual form:

n.,, = (n~~, + jn~$ )1”2 and ,6= knc,, . (34)

III. NUMERICAL SOLUTION OF THE WAV)? EQUATION

The wave equation (3) with n’(z) given by (1) is solved

numerically by using the central difference formula

T(Z+AZ)= 2W(Z)– V(Z– AZ)

-k2[n2(z)- n~f~] Y(z)(Az)2 (35)

where A z is a small increment in the depth dimension. Since

n’(z) undergoes a sharp change at z = O, the above scheme is

applied for z >0. In order to facilitate this, we use the boundary

conditions of TM modes and note that ‘TE mode results are

obtained by making p =1. We first designate the solution in the

region z <0 by *– and in the region z >0 by ‘f?~., According to

the boundary conditions, we have

V+(o) =;w(o) (36)

:V+(o)=; :v(’o). (37)

By utilizing a Taylor series expansion, we write

d’~+ (0)
Y+(O+AZ) =S?+(0)+ Az–=. (38)

From (36) and (37), we have

V+(Az)=; V-(0) +Az; ;~*-(O). (39)

The right-hand side of the above equation maybe evaluated with

the aid of (16), in which, for convenience, the arbitrary constant

B is taken to be nl/n~, giving

=l+AzpO (40)

from which it is seen that 1’+ (0)=1.

Initial values for the iterative scheme of (35) are provided by

~+ (0) and V+ ( Az) according to (36) and (40), respectively, and

solutions obtained when convergence is assured. The efficiency of

the scheme is facilitated by a good estimation of the value of ne~~

for each mode and, hence, also the value of 8 in (40). This

estimate is calculated with the aid of (25), (26), and (33).

IV. NUMERICAL RESULTS AND DISCUSSION

Values of the propagation constants, as given by (25), (26),

(33), and (34), are compared with those obtained numerically by

the scheme of Section III. The waveguide parameters in all cases

are n; = 4.9665, n: = 4.8469, n; = – 10.3 -- jl.0, corresponding

to Ti-diffused LiNb09 and gold cladding at A = 0.6328 pm.

Values of /3 for the first three TE and TM modes are shown in

Table I. It is noted that the labeling of TM modes in metal-clad

waveguides may be confusing because of the existence of the

surface plasma wave. This question is discussed in [3], and our

TM mode labeling is consistent with that used in this reference.

It is seen from Table I that the analytical and numerical results

are in good agreement for both the & and ~“.

The accuracy of a simplified model in which only the first two

terms of the Taylor series expansion of the Gaussian profile are
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TABLE I

VALUES OF THE COMPLEX PROPAGATION CONSTANTS OF THE METAL-CLAD WAVEGUIDE WITH GAUSSIAN INDEX PROFILE

●z in Andyticd Numaricd Analytical Nurnarkd

(vm) valtmt of 6’ value, of 9’ Valuas of e“ Vdum of 6“

● in Analytical Numadcd Analytical Numarical

(h) alum of 0’ valum of & valuas of & dims of 6“

TEO Mods

2 22.021% 22.024S2 0.79J04(-4) 0.7s740(-4)

J 22.0S474 22.0%J6 0.46120(-4) 0.44ss4-4)

4 22.07221 22.07524 0.s0965(-4) 0.20299(-4)

7 22.09546 22.09590 0.1S9S2(-4) 0.13752(-4)

10 22.10s01 22.10527 o.oem9(-4) O.mzl x+

15 22.)1255 22.11269 0.04582(-4) 0.04s41(+

2 22.02126 22.01726 0.32207(-S) 0.31794(-s)

5 22.05474 22.05205 0.18761(-S) o.le92q->)

4 22.0722 I 22.070ss 0.12604(-3) 0.12789(-s)

7 22.09546 22.09459 o.os6aJ(-s) 0.05783(-s)

10 22.10s01 22.10449 0.03J87(-3) 0.0$442(-s)

1s 22.1125s 22.11226 0.01869(-3) 0.01296(-s)

TE, WI& TM, Mode

2 21.90 JO> 21.9159S 0.9040J(-4) o.7171q4)

3 21.96E2S 21.972S9 o.s777q-4} 0.52999(4)

4 22.004JS 22.C0676 o.4062q-4) o. Ja692(-4)

7 22.03457 22.0s518 0.19401(-4) 0.19222(-4)

10 22.075S8 22.07&M 0.1182 s(-4) 0.1 167J(+

15 22.09258 22.092KI 0.066%(-4) o.06Jal(+

2 21.90JOS 21.9U9S2 O.%szq-s) O.nfml(-s)

5 21.96820 21 .%m 0.2S41 1(-S) 0.21442(-s)

4 22.004s5 22.00510 0.1648 s(-3) O.1 5820(-3)

7 22.054S7 22.053S7 0.07891(-s) 0.07ss9(->)

10 22.07558 22.07491 0.04S1 J(-s) O.o.w I e(-~)

15 22,W2S8 22.0921a 0.02704(-S) 0.027 lq-5)

TE2 Mods TM2 Nbda

2- -

s 2 1.S9384 21.90764 o.6m7q-4) 0.4s970(-4)

4 21.94561 21.94976 0.44JOJ(-4) 0.3913J(-4)

7 22.01576 22.01730 0.22470(-4) 0.21628(+)

10 22.04740 22.04s11 o.1401a(-4) 0.13726(-4)

15 22.07S17 22.07SS0 Owl 11(-4) 0.07921(4)

retained is of interest. In this case, the Gaussian profile becomes

parabolic and the complex expression of n~ff is obtained from

(25), (26), and (33) by making Cl= C2 = O. We thus have

(2q+l)n1@
n#f (parabolic) = n; – (41)

a= k

where

(42)

and

4(y)3’21m[p(n,,f:ni,1/2].(43)n~~ (parabolic) =;

Equations (41) and (43) are the same as those in [7] obtained for

the parabolic model. Examination of (25) shows that for n$~, the

Gaussian model tends to the parabolic model in a manner

2

3 21.WW4 21.90S57 0.24260(-S) 0.17S90(-J)

4 21.94361 21 .9460e 0.179 JI(-J) 0. I% S9(-J)

7 22.01S76 22.0152s 0.09 124(-J) Oaoeoq->)

10 22.04740 22.04681 0.05700(-J) 0.0% 16(-J)

15 22.07J17 22.07275 0.0J261(-J) o.oJ24q-J)

dependent on the mode order and the diffusion depth. For any

particular mode, the two models become similar when a, is large

enough for the mode to be well guided. This condition is also true

for n~~ given by (33) and (43). The mode attenuation increases

with mode order in contrast to the mode attenuation in wave-

guides with linear [5] and exponential [6] profiles. In addition, the

attenuation of TM modes is approximately an order of magni-

tude greater than that of TE modes.
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A Novel Low-Noise Downconverter System Using a

Microstrip Coupled Transmission-Mode

Dielectric Resonator

MARY P. MITCHELL, STUDENT~MBER, IEEE,AND
G. R. BRANNER, MEMBER,IEEE

.-tfrstract —A low-noise downconverter system for microwave downlink

applications is presented. Although most downconverters with an internally

generated kreal oseiflator have been designed utifiiing MESFET’S and

DGFETs, the circuit deseribed herein uses a silicon bipol~ Darlirtgton

pair as its active device and a dielectric resonator for feedback. Downcon-

verters of the latter type have been realized with noise figures as low as

4.57 dB and conversion gains of 7 dB over an intermediate frequency

range from 0.6 to 1.8 GHz.

I. INTRODUCTION

There is currently an increasing interest in downconverter

circuits which can be employed in low-noise receiver applications

such as those found in commercial radio links, satellite broad-

casting systems, and Doppler detectors.

Manuscript received May 12, 1986; revised September 8, 1986.
The authors are with the Department of Electrical and Computer Engineer-

ing, University of California, Davis, CA 95616. G. R. Branner is also with
Avantek, Inc., Santa Clara, CA.
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Fig. 1. Circuit configuration

The application of single- and dual-gate GRAS MESFET’S as

downconverters has been reported previously [1]-[4] for frequen-

cies in the X-band region. In addition to their advantage of

simplicity, these devices have been shown to provide adequate

conversion g@ and IF bandwidth; however, their noise perfor-

mance has been found to be a source of concern.

The objective of the effort reported in this paper was to

develop a downconverter operating over the 3.7 to 4.2 GH?

downlink band which would afford a simple, compact, and

easy-to-construct design.

The design is unique in the sense that it utilizes a bipolar

Darlington pair amplifier as its active deviee and dielectric reso-

nator as feedback to provide a source of stable internally gener-

ated local oscillator signal power. Add itionally, a uniquely

synthesized diplexer circuit was developed for the output which’

provides a wide-band response over the 01.6 to 1.8 GHz inter-

mediate frequency range used.

Design aspects of the downconverter and its circuit description

and construction are given in Sections II and III. Experimental

results are reported upon in Section IV.

II. DINJ~N CONSIDERATIONS

Several fundamental circuit configurations were investigated

for the dowrdink receiver application being considered. A feed-

back-type structure was selected based on the system constraints

involved and a desire for simplicity. This configuration is il-

lustrated in Fig. 1. In this system, the RF signal a,f is injected

into port 1, mixed with an internally generated local oscillator

(LO) signal created in the feedback device IIocated between ports

3 and 4, and the resultant IF signal is extracted at port 2.

The basic function of networks NI and Nz is to provide for

signal matching and filtering at the input, and diplexing and

matching at the output of the system. In the downconverter

described here, these circuits are composed of passive microstrip

elements amj chip capacitors.

Several fundarnentrd feedback arrangements maybe employed

to obtain the internally generated LO power required. These

include series? parallel, or reflective feedback. Due to its tempera-

ture stability, compactness, tunability, and simplicity, a dielec-

tric-resonator-based design was selected to perform this function

[5]. Although this portion of the circuit codd be realized with the

dielectric resonator placed at either the input [6] or output [7] of

the active device, the design developed employs the resonator as

a parallel feedback element. This configuration has been found to

possess numerous advantages over the others, such as ease of

tuning [5], [6], [8].

The basic configuration of the dielectric-resonator feedback

network employed in the local oscillator circuit is shown in Fig.

2(a). As illustrated in this figure, the circuit consists of a dielec-

tric resonator placed between two curved microstrip lines. Thus,

in this arrangement, there is magnetic cou~ling between the two
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